Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

2,2'-Isopropylidenediphenol

Ewa Rozycka-Sokolowska, Bernard Marciniak* and Volodymyr Pavlyuk

Institute of Chemistry and Environmental Protection, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
Correspondence e-mail: crystal@cz.onet.pl

Received 9 December 2005
Accepted 2 February 2006
Online 11 March 2006
The planar benzene rings in the title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$, are inclined at an angle of $82.61(9)^{\circ}$ to one another. There are two intramolecular hydrogen bonds of types $\mathrm{O}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$. The molecules are linked by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a one-dimensional network, which is compared with that of related compounds.

Comment

The present report is a continuation of our structural studies of compounds formed, as reaction by-products, during the industrial production of $4,4^{\prime}$-isopropylidenediphenol (commonly referred to as bisphenol A, BPA or $p, p-\mathrm{BPA}$) by the condensation of phenol with acetone in the presence of an acid catalyst. Examples of such by-products are the isomer $2,4^{\prime}$-isopropylidenediphenol ($o, p-\mathrm{BPA}$), the title compound $2,2^{\prime}$-isopropylidenediphenol [(I), o,o-BPA], and trisphenol, polyphenols and 2,2,4-trimethyl-4-(4-hydroxyphenyl)chroman (the so-called Dianin compound) (Kiedik et al., 1993). In a previous paper, we reported the structure of o, p-BPA [Cambridge Structural Database (Allen, 2002) refcode GALCAY (Rozycka-Sokolowska et al., 2005)]. We now compare (I) with the structures of p, p-BPA (CEGYOC02; Okada, 1996), o,p-BPA and compounds containing the $2,2^{\prime}$ isopropylidenediphenol skeleton, i.e. 2,2'-isopropylidenebis-(4-chloro-6-nitrophenol) (IPYCNP; Hay \& Mackay, 1979) and 2,2-bis(2-hydroxy-5-methyl-3-tert-butylphenyl)propane (XMBPPR; Hardy \& MacNicol, 1976).

(I)

As in the case of the p, p and o, p isomers of BPA and the other above-mentioned structures, the molecule of (I) contains two planar benzene rings, $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 11-\mathrm{C} 16$, attached to atom C 8 (Fig. 1); the largest deviations from planarity are -0.009 (2) and -0.005 (2) \AA for atoms C5 and C15, respectively. The dihedral angle between the planes formed by these rings is $82.61(9)^{\circ}$. This angle is in close
agreement with those found for the other isopropylidenediphenol isomers [84.81° for o,p-BPA, and 86.9 (2), 83.6 (2) and $79.7(2)^{\circ}$ for the three independent molecules of p, p BPA], and with the values of 82.27 and 78.07° observed in XMBPPR and IPYCNP, respectively. Hydroxy atoms O7 and O 17 are nearly coplanar with the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 11-\mathrm{C} 16$ rings, with deviations from the ring planes of -0.034 (1) and 0.044 (1) \AA, respectively; methyl atom C9 lies 0.161 (2) \AA above the plane of the $\mathrm{C} 1-\mathrm{C} 6$ ring and atom C 10 lies 0.154 (2) A below the plane of the C11-C16 ring. The bond lengths and valence angles in (I) are within the ranges observed in the p, p and o, p isomers, and in the other compounds containing the $2,2^{\prime}$-isopropylidenediphenol skeleton mentioned above.

There are two weak intramolecular hydrogen-bonding contacts (Table 1 and Fig. 1); the first involves hydroxy atom H17 interacting with the C1-C6 ring in a classical intramolecular $\mathrm{O}-\mathrm{H} \cdots \pi$ hydrogen bond (Desiraju \& Steiner, 1999). The $\mathrm{H} \cdot \mathrm{C}$ distances between atom H 17 and the nearest C atoms belonging to the C1-C6 ring are 2.43 (2) (for $\mathrm{H} 17 \cdots \mathrm{C} 1$) and 2.19 (2) \AA (for H17 . . C6), and they are similar to the corresponding $\mathrm{H} \cdots \mathrm{C}$ distances found for XMBPPR, 2,6-diphenylphenol (DPPHOL; Nakatsu et al., 1978) and bis(2-hydroxy-3-tert-butylphenyl)methane (NISQUB; Böhmer et al., 1996). The second $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, between the methyl group (atom C 10) and hydroxy atom O7 (Fig. 1), generates an $S(6)$ graph-set motif (Bernstein et al., 1995). The presence of this latter weak intramolecular hydrogen bond is a common characteristic of the o, p and o, o isomers of isopropylidenediphenol and is an important difference between these isomers and the p, p isomer. Analysis of geometrical parameters of the intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds presented here and in $o, p-\mathrm{BPA}$ shows a close similarity; the $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C} \cdots \mathrm{O}$ distances and the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle in (I) are similar to those found for the o, p isomer $[\mathrm{H} \cdots \mathrm{O}=2.51 \AA$, $\mathrm{C} \cdots \mathrm{O}=3.100(2) \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=120^{\circ}$ (GALCAY; Rozycka-Sokolowska et al., 2005)].

The packing structure of (I) involves one strong intermolecular hydrogen bond (Steiner, 2002) (Table 1), which links adjacent molecules into a chain, running parallel to the

Figure 1
The constituent molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines depict the intramolecular hydrogen bonds. H atoms are drawn as spheres of arbitrary radii. The centroid (Cg1) of the C1-C6 ring is denoted by a small black circle.

Figure 2
Part of the crystal structure of (I), showing two $C(8)$ chains of molecules lying in domains $0.05<c<0.45$ (molecules drawn with grey lines) and $0.55<c<0.95$ (molecules drawn with black lines) [symmetry code: (i) $\left.-x+1, y-\frac{1}{2},-z+\frac{1}{2}\right]$. H atoms not involved in hydrogen bonding have been omitted for clarity.
[010] direction, with a graph-set motif of $C(8)$ (Bernstein et al., 1995) (Fig. 2). The two chains passing through each unit cell are antiparallel with no direction-specific interactions between adjacent chains.

A similar one-dimensional hydrogen-bond network is found in 2,2'-diphenol (NUTSUQ; Byrne et al., 1998) and its derivatives, such as $2,2^{\prime}$-dihydroxy- $5,5^{\prime}$-diallylbiphenyl (CIPXII; Wang et al., 1983), 5,5'-di-tert-butylbiphenyl-2,2'-diol and 5,5'-dimethylbiphenyl-2,2'-diol (MEBMIP and MEBMOV, respectively; Bocelli et al., 1999). By contrast, a totally different molecular arrangement is found in the o, p and p, p isomers of (I). The molecules of o,p-BPA are connected by two independent intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a two-dimensional sheet of six-membered rings, which is parallel to (100), while the molecules of p, p-BPA are connected by a combination of six $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network built from many four- and six-membered rings. In summary, significant packing changes occur through hydrogen-bond networks found for these compounds, from three-dimensional for the p, p isomer, through two-dimensional for the o,p isomer, to a one-dimensional network here for the o, o isomer, all related to the moving of one (in $o, p-\mathrm{BPA}$) or two (in o, o BPA) hydroxy substituents from the para to the ortho position.

Experimental

The sample of o,o-BPA was obtained from the Institute of Heavy Organic Synthesis (Kedzierzyn-Kozle, Poland). Crystals suitable for X-ray diffraction were crystallized from ethanol by slow evaporation of the solvent at a constant temperature of 293 K .

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$
$M_{r}=228.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.032$ (1) \AA
$b=10.419$ (2) \AA
$c=17.017$ (3) \AA
$V=1246.8(4) \AA^{3}$
$Z=4$
$D_{x}=1.216 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Kuma KM-4 diffractometer $\omega-2 \theta$ scans
8248 measured reflections
1343 independent reflections
1163 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=68.1^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.071$
$S=1.03$
1343 reflections
165 parameters
H atoms treated by a mixture of independent and constrained refinement
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 35 reflections
$\theta=6-20^{\circ}$
$\mu=0.63 \mathrm{~mm}^{-1}$
$T=288$ (1) K
Block, colourless
$0.23 \times 0.21 \times 0.11 \mathrm{~mm}$

$$
\begin{aligned}
& h=-8 \rightarrow 8 \\
& k=-10 \rightarrow 12 \\
& l=-14 \rightarrow 20 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: } 1.9 \%
\end{aligned}
$$

Table 1
Hydrogen bonding geometry $\left(\AA,^{\circ}\right)$.
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 17^{\mathrm{i}}$	$0.88(3)$	$2.00(3)$	$2.843(2)$	$160(2)$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 7$	0.96	2.45	$3.031(2)$	119
$\mathrm{O} 17-\mathrm{H} 17 \cdots \mathrm{Cg} 1$	$0.86(2)$	2.68	3.491	159

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.

All C-bound H atoms were refined in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic) and $0.96 \AA$ (methyl groups), and with $U_{\text {iso }}(\mathrm{H})$ values of 1.2 (aromatic) or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\text {eq }}(\mathrm{C})$. The H atoms of hydroxy groups were located in difference maps and refined isotropically. Friedel equivalent data were merged using MERG4 in SHELXL97 (Sheldrick, 1997), according to the standard procedure for X-ray measurements of chemical compounds without atoms heavier than Si .

Data collection: KM4B8 (Gałdecki et al., 1996); cell refinement: KM4B8; data reduction: KM4B8; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000) and MERCURY (Version 1.4; Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

This work was financed by the Ministry of Education and Science (Poland) from the 'financial means for science in 2005-2006', as project No. 3 T09A 10829.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1119). Services for accessing these data are described at the back of the journal.

organic compounds

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1575.
Bocelli, G., Cantoni, A. \& Righi, L. (1999). J. Chem. Crystallogr. 29, 157-161.
Böhmer, V., Dörrenbächer, R., Frings, M., Heydenreich, M., de Paoli, D., Vogt, W., Ferguson, G. \& Thondorf, I. (1996). J. Org. Chem. 61, 549-559.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Byrne, J. J., Chavont, P. Y., Averbuch-Pouchot, M.-T. \& Vallee, Y. (1998). Acta Cryst. C54, 1154-1156.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
Gałdecki, Z., Kowalski, A., Kucharczyk, D. \& Uszyński, I. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.

Hardy, A. D. \& MacNicol, D. D. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1140-1142.
Hay, D. G. \& Mackay, M. F. (1979). Acta Cryst. B35, 2952-2959.
Kiedik, M., Kolt, J., Marszycki, J., Zajac, E., Bek, T., Swiderski, Z., Rzodeczko, A., Mroz, J. \& Olkowska, J. (1993). US Patent No. 5198591.

Nakatsu, K., Hiroshi, Y., Kunimoto, K., Kinugasa, T. \& Ueji, S. (1978). Acta Cryst. B34, 2357-2359.
Okada, K. (1996). J. Mol. Struct. 380, 223-233.
Rozycka-Sokolowska, E., Marciniak, B., Pavlyuk, V. \& Dziwinski, E. (2005). Acta Cryst. C61, o45-o46.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. University of Utrecht, The Netherlands.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Wang, Y., Cheng, M.-Ch., Lee, J.-Sh. \& Chen, F.-Ch. (1983). J. Chin. Chem. Soc. (Taipei), 30, 215.

